
1

Neo4j: The Advising Matrix

Casey Walters
InspirEd Lab
OMIS 695

2

 “There’s a difference between knowing the path and walking the
path.”

- Morpheus

3

Table of Contents

Introduction_ _4

:Technology:_ _4

:Business_Problem:_ _5

:Proposed_Business_Solution:_ _6

Method_ _7

:Neo4j:_ 7

:Cypher:_ _7

:Database_Schema:_ 8

Results_ _10

:Complex_Queries:_ _10

Discussion_ 14

:Next_Path:_ _14

References_ 15

4

Introduction

:Technology:

Databases are organized collections of data. There are lots
of different ways to organize this data. Graph databases focus on
the relationships between the data rather than the data itself. A
graph database is organized in a network. Data is represented in
nodes, properties, tags, and edges. Advantages of graph databases
are performance, flexibility, and agility. Graph databases are
simple and have fast retrieval. They are scalable and adapt to
new business requirements much easier than databases using the
relational model. The database schema can be altered, where a
relational database would need to follow the schema it was built
using. Neo4j.com lists 5 areas graph databases are being used:
fraud detection, real time recommendation engines, master data
management, network/IT operations, and identity and access
management.

Graph databases do not have an official query language, but
many use SPARQL, like Amazon Neptune, IBM DB2, and Allegro. Neo4j
uses Cypher, which “is a declarative, SQL-inspired language for
describing visual patterns in graphs using ASCII-Art syntax” (
Cypher Query Language Developer Guides & Tutorials, n.d.).

Current attitudes in business seem to align with the idea that
one should choose a database based off the data model, rather
than try to fit the data into a relational model. Recently, graph
databases have seen a surge in popularity because they can handle
some of the complex questions easier than a relational database
would.

For example, say you want to know the name of that one
romantic comedy that had the actor/writer and the actor that
played the lead in “The Matrix”.

With the graph model, you would first locate the “The Matrix”
movie node, as seen in figure 1.0.

You would then follow the “lead” edge to find the node “Keanu
Reeves”, the actor who played the lead in The Matrix.

You would find all the movies Keanu Reeves has also acted in, and
then filter those movies with the category “romantic comedies”.

Then you would take those results and write a query that looks
for a movie that had an actor lead and write in the movie.

5

This would involve plenty of complex queries in a
relational model but is rather simple with the graph model.
However, there are plenty of situations where a SQL database
makes more sense for the business.

:Business_Problem:

Currently, the OMIS Academic Advisor meets face to face
with dozens of students a day, discussing their schedules for
next semester. There are a fixed number of classes; and only so
many unique combinations of courses being offered, enrolled in,
and counting towards specific degrees. There is no true data
stored on the courses at NIU, even a CSV file with the course
names, numbers, and descriptions. Instead, we were told to use
the course catalog.

Figure 1.0: The graph model simplifies some queries that would
get very complex in a relational database using SQL.

6

Without a logical way to store this data, we are forced to
rely on human brain power to perform these complex queries
quickly and accurately every time.

:Proposed_Business_Solution:

By creating a graph database to represent the relationships
between the courses in the OMIS department, we are providing a
faster, more accurate system for students to use when trying to
select their classes. This also removes stress on the academic
advisor. By having students use this system for easy course
scheduling questions, we free up time the academic advisor can
now use to do other things in their job description.

7

Method

:Neo4j:

Neo4j is a popular graph database used internationally. The
first ever version of Neo4J was developed in 2002, and the
Swedish-based company’s creation followed in 2007 (“Company”,
n.d.). Neo4j is “one of the most popular property graph databases
that stores graphs natively on disk and provides a framework for
traversing graphs and executing graph operations” (Francis et
al., 2015).

Neo4j is a unique offering amongst other graph databases.
History of Databases and Graph Database claims “Neo4j’s storage
engine uses fixed-size arrays to store the graph data, and can
search nodes and relationships in O(1) time. This can be achieved
by using array structures not by indexes. And Neo4j insists that
Neo4j is a native graph database and the others are not, because
the other systems use other storage engines” (Admin, 2017). Neo4j
is incredibly fast and simplifies complex business problems. This
is why Neo4j was chosen as the graph database in this project.

:Cypher:

Cypher is a query language for graph databases. Cypher
allows us to create nodes and relationships. It also allows us to
assign properties and tags to these nodes. Please see figure 1.1
below.

Figure 1.1: Cypher allows for creating these types of
relationships. Nodes represent data, but data can also be
stored within relationships. This is an advantage of graph
databases.

8

Cypher borrows a lot of structure from SQL. For example,
both SQL and Cypher use the WHERE and ORDER BY clauses. Cypher
was created based on the graph model. It is a very visual
language, and is based on ASCII Art. You will notice the use of
parenthesis to create nodes, and the use of arrows to show
relationships.

Cypher uses a few basic clauses:

▪ MATCH: Most common way to get your data from the graph.

▪ WHERE: Adds constraint to a pattern, or will filter the
results of the query with the help of WITH.

▪ RETURN: What you want returned by the query. Similar
functionality to the SELECT clause in SQL. (Chapter 1,
n.d.)

▪ CREATE: Used to create a node in the database.

:Database_Schema:

Below is a sample of code used to make nodes. Use the
CREATE clause to create a new node. I have specified that these
nodes will be courses with the “:Course”.

CREATE

(:Course {name: 'OMIS 352', desc: 'Managing Projects in Business'}),

(:Course {name: 'OMIS 449', desc: 'Business Application Development'}),

(:Course {name: 'OMIS 460', desc: 'Business Computing Environments and Networks'}

),

(:Course {name: 'OMIS 462', desc: 'Business Systems Analysis, Design, and Develop

ment'}),

(:Course {name: 'OMIS 475', desc: 'Internet and Web Computing Technologies'})

The name, which appears in the center of the node when you
view the graph database, will always be the OMIS course number. I
have assigned each course an attribute, named “desc” for
description. This is where the true name of the class is stored.
For example, the course OMIS 475: Internet and Web Computing
Technologies is broken down into a node named OMIS 475, and it’s
description is “Internet and Web Computing Technologies”.

Below is another example of creating a node.

CREATE (cert1:Certification { name: "IS Certification" })

9

This is the code used to create the IS Certification. I
have used an alias here, cert1. The type of node is
Certification, specified by the code “:Certification”. I have
also assigned an attribute, name. the name of the certification
is “IS Certification”.

MATCH (cert1:Certification { name: 'IS Certification' }),(p:Course { name: 'OMIS

352' })

MERGE (cert1)-[r:FULFILLED_BY]->(p)

RETURN cert1.name, type(r), p.name

Above is a sample of code that creates a relationship. I
use MATCH to find two nodes; the IS Certification node and the
OMIS 352 node. I want to create a relationship between these two
nodes, so I use the MERGE clause. Notice the visual clarity of
the code in this sentence. I specify that the IS Certification
(which I nicknamed Cert1 back when I created the node) has a
“fulfilled by” relationship with p. p is also a nickname, or
alias, for a course. The course I selected in the MATCH clause
was OMIS 352. This line states the IS Certification can be
fulfilled by OMIS 352. Lastly, I wanted to return the name of
cert1, the type of relationship between these two nodes, and the
name of p, or the course.

Below is a snippet of code used to create the path
“graduation”. First, I used a MATCH statement to specify which
nodes I was interested in creating a relationship between. I
chose the nodes “First Semester Junior” and “Second Semester
Junior”, which are classified as “Standing” nodes. I have
nicknamed them S1 and S2, respectively. I then used MERGE to
create the relationship “Next Semester” on the path I named
“Graduation”.

MATCH (s1:Standing{name:"First Semester Junior"}),(s2:Standing { name: "Second Se

mester Junior" })

MERGE (s1)-[:NEXT_SEMESTER {path: "graduation"}]->(s2)

This was done to create a progression within the database.
By setting up the path ‘First Semester Junior’ to ‘Second
Semester Junior’ to ‘First Semester Senior’ to ‘Second Semester
Senior’ to ‘Graduate’, we are setting ourselves up to assign
courses to different semesters. For example, a first semester
junior would most likely be enrolled in the College of Business
Core (OMIS 338, OMIS 351, etc). We create a relationship between
these courses and the student standing.

10

Results

:Complex_Queries:

The most basic query discussed in this paper is figure 1.2 below.
The cypher used to create this query is:

match (c) return c;

This code first runs to match any data related to “c”, which is
the alias for courses. Next, “return c” will return all the data
relating to courses. This is the equivalent of a select all statement
in SQL.

Some courses in the department are listed as a prerequisite for
other courses more than others. It would be beneficial for a student
to take the courses that are more often listed as prerequisites
earlier on than ones that are less often listed, in order to maximize
the courses they can take in later semesters.

Figure 1.2: This is the contents of the entire advising database
shown visually, and the output of a select all statement in Cypher.

11

Say a student is enrolling in classes for their next semester.
This student is particularly interested in expanding their options in
future semesters. The student may very likely perform a query much
like the one below to solve this issue.

match(e:Course{name: "OMIS 452"})-[:PREREQ]->(c:Course) Return c.name, c.desc;

This snippet of code is looking for the course named “OMIS 452”.
It will locate the OMIS 452 node and look for relationships named
“PREREQ” that the OMIS 452 node has with other course nodes.

In English, this code is asking “which courses have the course
OMIS 452 listed as a prerequisite?”

Now the student will be aware that if they take (and pass) OMIS
452, the courses returned from this query now become available for
them to enroll next time around. (the courses returned may have other
prerequisite relationships with other courses, so the student would
ideally do this query a couple times with different classes, to see
what would extend their opportunities most.) The results of the query
are displayed in figure 1.3 below.

Figure 1.3: The results of the OMIS 452 prerequisite query.

12

Now let’s continue with the same student in the previous example.
The student can add on to the query to get more specific results. Say
the student doesn’t want OMIS 462 in the results. Maybe they are aware
that OMIS 462 is taught online in the semester after this one, and
they are not interested in taking the course for that reason. The
student may specify they are uninterested receiving this course in the
list of results using the following query.

match(e:Course{name: "OMIS 452"})-[:PREREQ]-

>(c:Course) where c.name <> "OMIS 462" Return c.name, c.desc;

This query is matching courses that have the relationship called
“PREREQ” with the course named “OMIS 452”. Return the course names and
descriptions of courses that match this criterion AND that are not
named “OMIS 462”. See the results of this query in figure 1.4.

Say this student is interested in pursuing the Data Analytics
certification. They may benefit from knowing which courses count for
the Data Analytics certification that also require OMIS 452 as a
prerequisite.

The Cypher below asks this question, and figure 1.5 displays the
results.

match(e:Course{name: "OMIS 452"})-[:PREREQ]->(c:Course)<-[:FULFILLED_BY]-

(:Certification{name:"DA Certification"}) Return c.name, c.desc;

Figure 1.4: The results of the OMIS 452 prerequisite query without
the OMIS 462 course being returned.

13

Now let’s say a student is pursuing the IS certification and has
room in their schedule next semester to take a class that will fulfill
an IS certification requirement. However, this student has not taken
OMIS 452 yet.

match (c:Course)<-[:FULFILLED_BY]-

(:Certification{name: "IS Certification"}) Where NOT (c)-[:PREREQ]-

({name: "OMIS 452"}) Return c.name, c.desc;

This query is finding all the course nodes that have the
“FULFILLED_BY” relationship type with the IS Certification node.
However, this code is eliminating any of those courses from the
results that have a “PREREQ” relationship with a course node named
“OMIS 452”. Figure 1.6 shows the results of this query.

Figure 1.5: The courses returned all satisfy the following: a), the
course is needed to fulfill the Data Analytics certification and b),
the course has OMIS 452 as a prerequisite.

Figure 1.6: The courses returned are the courses that will fulfill
the IS certification but don’t require taking OMIS 452 beforehand.

14

Discussion

:Next_Path:

Corequisites seem to be an interesting issue to represent
graphically. Prerequisites are simple, because you must take one
course before another. The Cypher needed to build this relationship is
represented like this: (a)-[:is_prerequisite]->(b). However, a
corequisite is used to express a course can be taken at the same time
as another. Cypher requires relationships have a direction, but
direction does not need to be specified in read queries. To get around
this, I believe you can create the relationships both ways, and
purposefully ignore direction while querying. For example, a and b are
corequisites. Create the relationships (a)-[:IS_COREQ]->(b), (b)-
[:IS_COREQ]->(a). Then when writing queries, don’t specify a direction
like this: (a)-[:IS_COREQ]-(b).

More properties should be added to course nodes. It would be
beneficial for students to be able to use a WHERE statement to specify
information such as instructors, professors who teach the course, when
the course is offered(time, day of the week, semesterly), where the
course is offered (NIU Naperville, main DeKalb campus, NIU Hoffman
Estates), and possibly occupancy.

Learning paths can be used in collaboration with learning items
and student standing. For example, students typically will take the
College of Business core during their first semester of junior year.
This could be paired with the suggested schedules online to provide
students with more structure.

A web application is needed for this to become a viable business
solution. While Cypher and Neo4j are easy to use, I don’t see this
database being adopted by students or faculty unless they can interact
with some kind of application.

15

References

Admin. (2017, May 2). History of Databases and Graph Database.
Retrieved from https://bitnine.net/blog-graph-database/history-of-
databases-and-graph-database/

Chapter 1. Introduction. (n.d.). Retrieved April 29, 2020, from
https://neo4j.com/docs/cypher-manual/current/introduction/#cypher-
introduction

Company. (n.d.). Retrieved from https://neo4j.com/company/

Cypher Query Language Developer Guides & Tutorials. (n.d.). Retrieved
from https://neo4j.com/developer/cypher-query-language/

Francis, N., Libkin, L., Plantikow, S., Green, A., Lindaaker, T.,
Rydberg, M., … Selmer, P. (2015, June 10). Cypher: An Evolving Query
Language for Property Graphs. Retrieved April 29, 2020, from
https://hal.archives-ouvertes.fr/hal-01803524/file/paper.pdf

